Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI.
نویسندگان
چکیده
RATIONALE AND OBJECTIVES The aim of this study was to investigate the short-term effects of furosemide on renal perfusion by using arterial spin labeling (ASL) magnetic resonance imaging. MATERIALS AND METHODS Eleven healthy human subjects were enrolled in the study. The measurement of renal blood flow (RBF) was performed by applying an ASL technique with flow-sensitive alternating inversion recovery spin preparation and a single-shot fast spin-echo imaging strategy on a 3.0-T magnetic resonance scanner. For all subjects, the ASL magnetic resonance images were obtained before agent injection as a baseline scan. Then 20 mg of furosemide was injected intravenously. Postfurosemide ASL images were acquired following administration to evaluate the renal hemodynamic response. RESULTS Postinjection scans showed that cortical RBF decreased from 366.59 ± 41.19 mL/100 g/min at baseline to 314.33 ± 48.83 mL/100 g/min at 10 minutes after the administration of furosemide (paired t test, P = .04 vs baseline), and medullary RBF decreased from 118.59 ± 24.69 mL/100 g/min at baseline to 97.38 ± 18.40 mL/100 g/min at 10 minutes after the administration of furosemide (paired t test, P = .01 vs baseline). There was a negative correlation between the furosemide-induced diuretic effect and the reduction of RBF (Spearman's r = -0.61). CONCLUSIONS The dominant hemodynamic effect of furosemide on the kidney is associated with a decrease in both cortical and medullary blood perfusion. Furthermore, the quantitative ASL technique may provide an alternative way to noninvasively monitor the change in renal function due to furosemide administration.
منابع مشابه
Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla
BACKGROUND Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers. METHODS ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 ...
متن کاملEffects of alcohol intoxication and gender on cerebral perfusion: an arterial spin labeling study.
An increasing number of studies use functional MRI (fMRI) and blood oxygen level-dependent (BOLD) signal to investigate the neurofunctional basis of acute alcohol effects on the brain. However, the BOLD signal reflects neural activity only indirectly as it depends on regional hemodynamic changes and is therefore sensitive to vasoactive substances, such as alcohol. We used MRI-based pulsed arter...
متن کاملQuantitative Renal Perfusion Measurements in a Rat Model of Acute Kidney Injury at 3T: Testing Inter- and Intramethodical Significance of ASL and DCE-MRI
OBJECTIVES To establish arterial spin labelling (ASL) for quantitative renal perfusion measurements in a rat model at 3 Tesla and to test the diagnostic significance of ASL and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a model of acute kidney injury (AKI). MATERIAL AND METHODS ASL and DCE-MRI were consecutively employed on six Lewis rats, five of which had a unilateral...
متن کاملEarly Detection of Response to Antiangiogenic Therapy in Metastatic Clear-cell Renal Cell Carcinoma with ASL MRI
prior to therapy in a patient with history of right nephrectomy for RCC and local recurrence in the nephrectomy bed (box). ASL MRI shows high levels of perfusion within the mass, similar to those of the renal cortex in the left kidney (arrow). Coronal T2-weighted (C) and perfusion (D) images of the same patient obtained 1 week after initiation of antiangiogenic therapy with sorafenib and bevaci...
متن کاملThe effects of Mas receptor antagonist (A779) and renal perfusion pressure on serum nitrite concentration in male and female rats when angiotensin II receptors 1 & 2 were blocked
Introduction: Renin angiotensin system has an important role in blood pressure and renal functions. Active angiotensin-converting enzyme 2 converts angiotensin I into angiotensin-(1-7) which is a vasodilator hormone and interacts with nitric oxide changes as well as other angiotensin II receptors. In this study we evaluated the role of Mas receptor antagonist (A779) and renal perfusion press...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Academic radiology
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2012